Article 4416

Title of the article

A STUDY OF THE ROLE OF SUCCINATE DEHYDROGENASE IN THE MECHANISMS OF LACTIC ACID CONCENTRATION INCREASING AT THE ANAEROBIC THRESHOLD 

Authors

Solovev Vladimir Borisovich, Doctor of biological sciences, professor, sub-department of general biology and biochemistry, Penza State University (40 Krasnaya street, Penza, Russia), bionauka@ya.ru
Volodin Roman Nikolaevich, Lecturer, sub-department of physical training, Penza branch Military academy of logistics named after A. V. Khrulev (Penza-5, Russia), volodika7@

Index UDK

577.156

DOI

10.21685/2307-9150-2016-4-4

Abstract

Background. The article considers the mechanisms of energy-supply of functioning muscles. The purpose of this work is to study the role succinate dehydrogenase role as one of the key enzymes of the tricarboxylic acids cycle in lactate accumulation at the threshold of anaerobic exchange.
Materials and methods. The research was carried out on outbred white rats. The authors studied the succinate dehydrogenase activity in the animals’ muscles homogenate after certain physical activity, and also in vitro at different pH values of blood of the reactive medium.
Results. The work analyzes the dynamic pattern of blood pH at the stepwise raising exercise of athletes of different qualification and discusses possible molecular mechanisms of sharp increase of blood lactate concentration. It is shown that thebreakpoint on the pH value change curve precedes in time the breakpoint on the lactate concentration increase curve at certain physical activities.
Conclusions. Upon reaching the pH equaling 7,35 in blood serum the activity of succinate dehydrogenase sharply decreases leading to rapid accumulation of metabolites, mostly carboxylic acids, which cause considerable reduction in pH and energy metabolism transition to the predominantly glycolytic.

Key words

succinate dehydrogenase, pH, lactate, anaerobic threshold, physical activity

Download PDF
References

1. Douglas C. G. Lancet. 1927, vol. 213, pp. 213–218.
2. Wasserman K., Whipp B. J., Koyal S. N., Beaver W. L. J. Appl. Physiol. 1973, vol. 35, pp. 236–243.
3. Holtman W. Fortschr. Med. 1961, vol. 7, pp. 43–453.
4. Westerblad H., Allen D., Jannergren J. News Physiol. Sci. 2002, vol. 17, pp. 17–21.
5. Solovev V. B., Gengin M. T. The peptidergic system of humans and animals at physical exercise. Vienna: “East West” Association for Advanced Studies and Higher Education GmbH, 2016, 196 p.
6. Solov'ev V.B., Solov'eva O.V., Stolyarov A.A., Skudnov V.M. Actualscience. 2015,vol.1, no.2 (2), pp. 6–16.
7. Billat V. L., Koralsztein J. P., Morton R. H. J. Appl. Physiol. 2009, vol. 107 (2), pp. 478–487.
8. Solov'ev V. B., Gengin M. T., Skudnov V. M., Petrushova O. P. Rossiyskiy fiziologicheskiy zhurnal im. I. M. Sechenova [Russian physiological journal named after I. M. Sechenov]. 2010, vol. 96, no. 5, pp. 539–544.
9. Inui H., Miyatake K., Nakano Y., Kitaoka S. J. Biochem. 1984, vol. 96 (1), pp. 931–934.
10. Krasnova A. F., Samodanova G. I., Usik S. V., Yakovlev N. N. Fiziologicheskiy zhurnal SSSR im. I. M. Sechenova [Physiological journal of USSR named after I. M. Sechenov]. 1977, vol. 63, no. 6, pp. 864–871.
11. Brooks G. A., Dubouchaud H., Brown M., Sicurello J. P., Butz C. E. Proc. natl. Acad. Sci. USA. 1999, vol. 96, pp. 1129–1134.
12. Lowry O. H., Rosebrought N. J., Farr A. L., Randall R. J. J. Biol. Chem. 1951, vol. 193, no. 1, pp. 265–275.

 

Дата создания: 13.04.2017 13:45
Дата обновления: 14.04.2017 14:25